CS 210: Mathematical Logic Notes
Proof Systems


Types of Proof Systems
- Hilbert-style system 希尔伯特风格系统($\Sigma \vdash_{H}A$):many axioms and only one rule.The deduction is linear.
- Natural Deduction system自然演绎系统($\Sigma \vdash_{ND}A$):Few axioms(even none) and many rules The deductions are tree-like .
- Resolution 归结系统($\Sigma\vdash_{Res}A$):used to prove contradictions
Hilbert-style Proof System


分离规则:如果有前提
- A为真
- A可以推出B
那么可以推出结论:B为真
推理链




Derived rules in $\mathcal{H}$ 衍生规则
- 反证法

- 演绎法

当且仅当在$\Gamma$成立的的系统下A可以推理出B时有“$\Gamma \cup {A}$“成立的系统下可以推理出B。
使用演绎法可以推理出下面这个结论
- Transitivity rule 传递率

- Exchange of antecedent rule 交换律

- Double negation rule 二次取反规则


- 反证法2

$$
\vdash (\lnot A \rightarrow A)\rightarrow A
$$